Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aesthetic Plast Surg ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714538

RESUMO

BACKGROUND: The facial aging process entails alterations in the volume, shape, and texture of all skin layers over time. Calcium hydroxyapatite (CaHA) is a well-established safe skin filler with unique properties to resolve some skin alterations by stimulating neocollagenesis. The vectoral-lift (V-lift) technique targets the global repositioning of facial structures by addressing distinct anatomical injection planes. It includes deep facial augmentation with Radiesse PlusTM to retain ligament restructuring and superficial subcutaneous enhancement with diluted Radiesse DuoTM. Herein, we present cases that illustrate the use of this approach. METHODS: This pilot study enrolled 36 participants (33 women and three men; ages 37-68 years) in a Brazilian clinical setting, and all patients underwent a single treatment. Photographs were taken at rest, in frontal and oblique views, before injection, and 90 days after treatment. RESULTS: Treatment resulted in elevation of the upper and middle face, notable improvements in the infraorbital hollow, and adjustment of the mean facial volume. CONCLUSIONS: The V-lift technique is a three-dimensional pan-facial treatment that relies on ligament support and face vectoring to obtain a lifting effect and facial contour restoration. It encompasses deep facial augmentation involving the use of Radiesse PlusTM for restructuring and retaining ligaments and Radiesse DuoTM for superficial subcutaneous enhancement. This approach targets a global repositioning of the facial structures by addressing distinct anatomical injection planes. It achieves a repositioning of the overall facial anatomy without requiring a substantial volumetric expansion. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

2.
Aesthetic Plast Surg ; 48(8): 1511-1521, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38191864

RESUMO

BACKGROUND: Among the nasal muscles, the levator labii superior alaeque nasi (LLSAN) acts as a transitional muscle that conjugates with other nasal and perinasal muscles. Thus, when treating the nasal region with Botulinum toxin (BTX), it is important to understand local nasal muscular dynamics and how they can influence the muscular dynamics of the entire face. METHODS: This is a retrospective analysis of cases treated by an injection pattern encompassing the face, including nasal muscles. Photographs were taken at rest and during motion (frontal and oblique views), before and after treatment. RESULTS: A total of 227 patients have been treated in the last 18 months with the following results: eyebrow tail lifting, softness of crow's feet, improvement of the drooping of the tip of the nose, and shortening of the lip philtrum when smiling. We present cases illustrating the use of this approach. CONCLUSIONS: Treating the facial muscles globally (including the frontal, corrugators, procerus, orbicularis oculi, platysma, DAO, and nasal muscles) can improve the smile and facial expressions. This is believed to occur because the elevated portion of the upper lip muscle becomes stronger as the nasal part of the LLSAN is paralyzed. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Toxinas Botulínicas Tipo A , Expressão Facial , Músculos Faciais , Humanos , Estudos Retrospectivos , Músculos Faciais/efeitos dos fármacos , Feminino , Toxinas Botulínicas Tipo A/administração & dosagem , Adulto , Pessoa de Meia-Idade , Masculino , Injeções Intramusculares , Resultado do Tratamento , Nariz , Estudos de Coortes , Estética , Fármacos Neuromusculares/administração & dosagem
3.
Int J Mol Sci ; 21(8)2020 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-32290394

RESUMO

Psd1 is a pea plant defensin which can be actively expressed in Pichia pastoris and shows broad antifungal activity. This activity is dependent on fungal membrane glucosylceramide (GlcCer), which is also important for its internalization, nuclear localization, and endoreduplication. Certain cancer cells present a lipid metabolism imbalance resulting in the overexpression of GlcCer in their membrane. In this work, in vitroassays using B16F10 cells showed that labeled fluorescein isothiocyanate FITC-Psd1 internalized into live cultured cells and targeted the nucleus, which underwent fragmentation, exhibiting approximately 60% of cells in the sub-G0/G1 stage. This phenomenon was dependent on GlcCer, and the participation of cyclin-F was suggested. In a murine lung metastatic melanoma model, intravenous injection of Psd1 together with B16F10 cells drastically reduced the number of nodules at concentrations above 0.5 mg/kg. Additionally, the administration of 1 mg/kg Psd1 decreased the number of lung inflammatory cells to near zero without weight loss, unlike animals that received melanoma cells only. It is worth noting that 1 mg/kg Psd1 alone did not provoke inflammation in lung tissue or weight or vital signal losses over 21 days, inferring no whole animal cytotoxicity. These results suggest that Psd1 could be a promising prototype for human lung anti-metastatic melanoma therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Defensinas/farmacologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Pisum sativum/química , Proteínas de Plantas/farmacologia , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Biópsia , Linhagem Celular , Permeabilidade da Membrana Celular , Proliferação de Células/efeitos dos fármacos , Defensinas/química , Modelos Animais de Doenças , Feminino , Imunofluorescência , Glucosilceramidas/metabolismo , Imuno-Histoquímica , Neoplasias Pulmonares/tratamento farmacológico , Melanoma Experimental , Camundongos , Modelos Moleculares , Proteínas de Plantas/química , Conformação Proteica , Relação Estrutura-Atividade
4.
Proteins ; 88(1): 242-246, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31294889

RESUMO

Pisum sativum defensin 2 (Psd2) is a small (4.7 kDa) antifungal peptide whose structure is held together by four conserved disulfide bridges. Psd2 shares the cysteine-stabilized alpha-beta (CSαß) fold, which lacks a regular hydrophobic core. All hydrophobic residues are exposed to the surface, except for leucine 6. They are clustered in the surface formed by two loops, between ß1 and α-helix and ß2 and ß3 sheets. The observation of surface hydrophobic clusters reveals a remarkable evolution of the CSαß fold to expose and reorganize hydrophobic residues, which facilitates creating versatile binding sites.


Assuntos
Defensinas/química , Pisum sativum/química , Proteínas de Plantas/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína
5.
Biochim Biophys Acta Biomembr ; 1861(4): 713-728, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30639288

RESUMO

Psd2 is a pea defensin with 47 amino acid residues that inhibits the growth of fungal species by an uncharacterized mechanism. In this work, Psd2 interactions with model membranes mimicking the lipid compositions of different organisms were evaluated. Protein-lipid overlay assays indicated that Psd2 recognizes Fusarium solani glucosylceramide (GlcCerF.solani) and ergosterol (Erg) in addition to phosphatidylcholine (POPC) and some phosphatidylinositol species, such as PtdIns (3)P, (5)P and (3,5)P2, suggesting that these lipids may play important roles as Psd2 targets. Assays using lipid vesicles were also performed to study the behaviour and dynamics that occur after peptide-membrane interactions. Surface plasmon resonance analysis showed that Psd2 has a higher affinity for pure POPC and POPC-based vesicles containing GlcCer and Erg at a 70:30 proportion than for vesicles containing cholesterol (Chol). Partition experiments by fluorescence spectroscopy showed a decrease in Trp42 quantum yield of Psd2 in the presence of GlcCerF.solani and Erg, individually or in simultaneously enriched membranes. The partition coefficient (Kp) obtained indicated a Psd2 partition preference for this vesicles, confirmed by quenching assays using acrylamide and 5/16-doxyl-stearic acid. Furthermore, we showed that the presence of C8C9 double bonds and a methyl group at position C9 of the sphingoid base backbone of GlcCer was relevant to Psd2 activity against Aspergillus nidulans. These results are consistent with the selectivity of Psd2 against fungi and its lack of toxicity in human erythrocytes. Psd2 represents a promising natural compound for the treatment of fungal infections.


Assuntos
Defensinas/química , Ergosterol/química , Glucosilceramidas/química , Microdomínios da Membrana/química , Membranas Artificiais , Proteínas de Plantas/química , Pisum sativum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...